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ASYMMETRIC MICHAEL ADDITION OF A CHIRAL ESTER-DIENOLATE: 

ENANTIOSELECTIVE SYNTHESIS 0~ (-)-KHUSIMONE~ 

Wolfgang Oppolzer*, Rita Pitteloud, Gerald Bernardinelli and Kurt Baettig 

Departement de Chimie Organique, Universite de Geneve, CH-12 11 Geneve, Switzerland 

abstract: A double ir-face-selective aprotic Michael addition of the lithium dienolate derived 
from the chiral senecioate 2b to cyclopentenone coupled with recovery of the auxiliary 14 serves 
for the enantioselective synthesis of (-)-khusimone (12) (Schemes 1 and 4). 

- 
- 

The norsesquiterpene (+)-khusimone 12 has been prepared recently via a remarkably regio- and - 

stereoselective intramolecular type-II magnesium-ene reaction 8 + 9 (Scheme 1)'. Interested in - - 

rendering this approach enantioselective we focussed our attention on the dienolate addition/ 
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alkylation 1 + 4 where the first chiral center C(5) is created. Our strategy to control its abso- - - 

lute configuration was based on the following observation: addition of the dienolate derived from 

2a at -78" in THF followed by either rapid protonation or alkylation of the intermediate enolate 

&ve 3a3 (70% yield) or 4a (56%), respectively, both with 88:12-diastereoregulation of C(6)/C(5). - -- 

Accordingly a high dienolate-n-facial differentiation in the process 1 +- 4 should govern the - - 

chirality of both C(6) and C(5). By analogy to the powerful topological bias observed in the 

Lewis-acid mediated additions to the enoates 4" we expected selective neopentyloxy-shielding of 

one dienolate n-face in the enone addition B or C (Scheme 2). Rotation around the dienolate C,O- - - 

bonds should be restricted owing to the preferred synplanarity of the C(3)-H and the C-OLi bonds; 

this conformational hypothesis is supported by asymmetric alkylations of camphor-derived propio- 

nate enolates, as reported by ffeZmchen5. To predict the topicity of the conjugate addition the 
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Scheme 2 
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dienolate configuration becomes an issue. It was assumed to be (s-&s)-(E) based on differential 

nuclear Overhauser measurements of the ketene acetal obtained by successive treatment of methyl 

senecioate with LDA and TMSC16. Thus, invoking a staggered approach of the trigonal centers and 

the operation of electronic factors transition states j and C (Scheme 2) were considered. Projec- 

tion 5 exhibits steric repulsion between a cyclopentenone methylene and the dienolate methyl 

groups. Moreover, the carbonyl and the enolate oxygens are too far apart to permit chelation. On 

the other hand, orientation B is largely free of steric constraints and prone to chelation. It 

thus follows that the (5S,6S)-isomer 3b or s, formed via the more favorable transition state B - - 

should predominate'. 

Indeed the chiral senecioate 2b* gave on deprotonation with LDA in THF and subsequent addition - 

of cyclopentenone (-78", 5 min) a 63:21:9:7-mixture' of four diastereoisomers 3b (70% yield). 

X-ray-diffraction analysis of the major Michael adduct 3b1' (Scheme 3) shows its (5S,6S)-chiral- - 

ity, in full agreement with the above arguments. Similar aprotic Michael addition of the dienolate 

derived from 2b to cyclopentenone and in situ trapping of the intermediate enolate with ally1 

bromide gave :48:5:9:9 diastereoisomer mixture (GC) 4b (55%)11 (Schemes 1 and 4)3a12. Thus, 48% - 

asymmetric induction of the center C(5) has been achieved in the bifunctionalization 1 + 4b. This -- 

value was further confirmed by transformation of the crude reaction mixture to 13 which was ana- - 

lyzed by 19F-NMR13 and capillary-GC. The major isomer 4b (m.p. 28-30"), conveniently isolated in - 

37% yield by simple chromatography and crystallization, was assigned the (5S,6S)-configuration in 

view of the above X-ray evidence. This agrees with its conversion into enantiomerically pure 

(-)-khusimone (2). To this end ketalization and double bond-isomerization furnished the crystal- 

line ester (5S)-5b, m.p. 86-87". (5S,6R)-+, non-separable from the more polar of the (5R)-4b- - 

isomers,gave also (5S)-5b via the same sequence followed by chromatography. Reduction of (5S)-5b - - 

with AlH3 refurnished the control element 14 and yielded the enantiomerically pure alcohol (5S)-5. - 

The latter was further processed along the lines of the previous synthesis of (+)-12 (Schemes 1 - 

and 4)?12 Thus, in the magnesium-ene/carbonation step 3 + 2 + 10 center (55) induced the (S)-config- _ 

uration of center C(8) which in turn controlled the formation of (R)-C(1) during the final enolate 

alkylation. Consequently, optically pure (-)-khusimone, identified by comparison ([aID, mixedm.p., 

capillary GC, IR, 'H-NMR, 13C-NMR, MS) with an authentic sample, was obtained in 14% overall yield 
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from cyclopentenone. Similarly, the minor (5R)-isomers + furnished non-natural (+I-khusimone. 

We believe that this work, featuring an unusual double n-face-selective Michael processl' is 

subject to further improvement; nevertheless it may provide useful insight and applicability in 

the area of asymmetric carbon,carbon bond formation. 
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